Postdoc

Félix Rose

About me

I am a postdoctoral researcher in theoretical physics.

Resarch interests:

  • Condensed matter theory and statistical physics.
  • Low-dimensional, strongly correlated quantum systems.
  • Chiral superconductors.
  • Quantum impurities and Bose-Fermi mixtures.
  • Quantum phase transitions.
  • Functional renormalization group.
  • Variational method.

I am since 2019 working in the group of Dr. Richard Schmidt, part of the Theory Division of the Max Planck Institute of Quantum Optics in Garching, Germany.

Before that, I completed my Ph.D. in 2017 under the supervision of Dr. Nicolas Dupuis at Université Pierre et Marie Curie, now known as Sorbonne Université, in Paris, France. I was from 2017 to 2019 a member of Prof. Wilhelm Zwerger’s group at the Technical University of Munich in Garching, Germany.

Contact information

Email: felix(dot)rose(at)m4x(dot)org

Tel: (+ 49 89) 3 29 05 – 590
Room: A 0.34

Address:
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany

Publication list

Bibliometrics can be found in my Google Scholar profile.

Journal articles

  1. “Hall viscosity and conductivity of two-dimensional chiral superconductors,” F. Rose, O. Golan and S. Moroz.
    SciPost Phys. 9, 006 (2020), arXiv:2004.02590 [cond-mat.supr-con].
  2. “Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions,” F. Rose and N. Dupuis.
    Phys. Rev. B 97, 174514 (2018), arXiv:1801.03118 [cond-mat.stat-mech].
  3. “Superuniversal transport near a (2+1)-dimensional quantum critical point,” F. Rose and N. Dupuis.
    Phys. Rev. B 96, 100501(R) (2017), arXiv:1705.03905 [cond-mat.str-el].
  4. “Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2+1)-dimensional O(N)-symmetric quantum critical point,” F. Rose and N. Dupuis.
    Phys. Rev. B 95, 014513 (2017), arXiv:1610.06476 [cond-mat.str-el].
  5. “Critical Casimir forces from the equation of state of quantum critical systems,” A. Rançon, L.-P. Henry, F. Rose, D. Lopes Cardozo, N. Dupuis, P. C. W. Holdsworth, and T. Roscilde.
    Phys. Rev. B 94, 140506(R) (2016), arXiv:1606.03205 [cond-mat.stat-mech].
  6. “Bound states of the φ4 model via the nonperturbative renormalization group,” F. Rose, F. Benitez, F. Léonard, and B. Delamotte.
    Phys. Rev. D 93, 125018 (2016), arXiv:1604.05285 [cond-mat.stat-mech].
  7. “Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point: A nonperturbative renormalization-group approach,” F. Rose, F. Léonard, and N. Dupuis.
    Phys. Rev. B 91, 224501 (2015), arXiv:1503.08688 [cond-mat.quant-gas].
  8. “Spin- and valley-dependent magneto-optical properties of MoS2,” F. Rose, M. O. Goerbig, and F. Piéchon.
    Phys. Rev. B 88, 125438 (2013), arXiv:1307.2884 [cond-mat.mes-hall].

Ph.D. dissertation

“Dynamics and transport in the vicinity of a two-dimensional quantum critical point.”
<tel-01872537>.