Félix Rose

Email: felix(dot)rose(at)m4x(dot)org

Tel: (+ 49 89) 3 29 05 – 590 Room: A 0.34

Address: Max-Planck-Institute of Quantum Optics Hans-Kopfermann-Str. 1 85748 Garching, Germany

Félix Rose

I am a postdoctoral researcher in theoretical physics.

Research interests

-Condensed matter theory and statistical physics.

-Low-dimensional, strongly correlated quantum systems.

-Chiral superconductors.

-Quantum impurities and Bose-Fermi mixtures.

-Quantum phase transitions.

-Functional renormalization group.

-Variational method.

About me

I am since 2019 working in the group of Dr. Richard Schmidt, part of the Theory Division of the Max Planck Institute of Quantum Optics in Garching, Germany.

Before that, I completed my Ph.D. in 2017 under the supervision of Dr. Nicolas Dupuis at Université Pierre et Marie Curie, now known as Sorbonne Université, in Paris, France. I was from 2017 to 2019 a member of Prof. Wilhelm Zwerger’s group at the Technical University of Munich in Garching, Germany.

Publication list

Bibliometrics can be found in my Google Scholar profile.

Journal articles

“Hall viscosity and conductivity of two-dimensional chiral superconductors,” F. Rose, O. Golan and S. Moroz. SciPost Phys. 9, 006 (2020), arXiv:2004.02590 [cond-mat.supr-con].

“Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions,” F. Rose and N. Dupuis. Phys. Rev. B 97, 174514 (2018), arXiv:1801.03118 [cond-mat.stat-mech].

“Superuniversal transport near a (2+1)-dimensional quantum critical point,” F. Rose and N. Dupuis. Phys. Rev. B 96, 100501(R) (2017), arXiv:1705.03905 [cond-mat.str-el].

“Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2+1)-dimensional O(N)-symmetric quantum critical point,” F. Rose and N. Dupuis. Phys. Rev. B 95, 014513 (2017), arXiv:1610.06476 [cond-mat.str-el].

“Critical Casimir forces from the equation of state of quantum critical systems,” A. Rançon, L.-P. Henry, F. Rose, D. Lopes Cardozo, N. Dupuis, P. C. W. Holdsworth, and T. Roscilde. Phys. Rev. B 94, 140506(R) (2016), arXiv:1606.03205 [cond-mat.stat-mech].

“Bound states of the φ4 model via the nonperturbative renormalization group,” F. Rose, F. Benitez, F. Léonard, and B. Delamotte. Phys. Rev. D 93, 125018 (2016), arXiv:1604.05285 [cond-mat.stat-mech].

“Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point: A nonperturbative renormalization-group approach,” F. Rose, F. Léonard, and N. Dupuis. Phys. Rev. B 91, 224501 (2015), arXiv:1503.08688 [cond-mat.quant-gas].

“Spin- and valley-dependent magneto-optical properties of MoS2,” F. Rose, M. O. Goerbig, and F. Piéchon. Phys. Rev. B 88, 125438 (2013), arXiv:1307.2884 [cond-mat.mes-hall].

Ph.D. dissertation

“Dynamics and transport in the vicinity of a two-dimensional quantum critical point.” < tel-01872537>.